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Abstract With the fast global adoption of the Materials
Genome Initiative (MGI), scientists and engineers are faced
with the need to conduct sophisticated data analytics on large
datasets to extract knowledge that can be used in modeling the
behavior of materials. This raises a new problem for materials
scientists: how to create and foster interoperability and share
developed software tools and generated datasets. A
microstructure-informed cloud-based platform (MiCloud™)
has been developed that addresses this need, enabling users
to easily access and insert microstructure informatics into
computational tools that predict performance of engineering
products by accounting for microstructural dependencies on
manufacturing provenance. The platform extracts information
from microstructure data by employing algorithms including
signal processing, machine learning, pattern recognition, com-
puter vision, predictive analytics, uncertainty quantification,
and data visualization. The interoperability capabilities of
MiCloud and its various web-based applications are demon-
strated in this case study by analyzing Ti6AlV4microstructure
data via automatic identification of various features of interest

and quantifying its characteristics that are used in extracting
correlations and causations for the associated mechanical be-
havior (e.g., yield strength, cold-dwell debit, etc.). The data
were recorded by two methods: (1) backscattered electron
(BSE) imaging for extracting spatial and morphological infor-
mation about alpha and beta phases and (2) electron backscat-
ter diffraction (EBSD) for extracting spatial, crystallographic,
and morphological information about microtextured regions
(MTRs) of the alpha phase. Extracting reliable knowledge
from generated information requires data analytics of a large
amount of multiscale microstructure data which necessitates
the development of efficient algorithms (and the associated
software tools) for data recording, analysis, and visualization.
The interoperability of these tools and superior effectiveness
of the cloud computing approach are validated by featuring
several examples of its use in alpha/beta titanium alloys and
Ni-based superalloys, reflecting the anticipated computational
cost and time savings via the use of web-based applications in
implementations of microstructure-informed integrated com-
putational materials engineering (ICME).
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Background

Successful implementation of the integrated computational ma-
terials engineering (ICME) [1] approach is hinged on the inte-
gration of microstructure information into computational tools
that predict the performance of engineering products and simu-
late its dependencies on the manufacturing processes. Towards
this goal, the Materials Genome Initiative (MGI) [2] called for
creation of infrastructures to couple experimental tools,
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computational tools, and digital data to make material science
and engineering data more valuable [3]. In pursuit of these goals,
there have been recent attempts to build cyberinfrastructure so-
lutions that enable the sharing ofmaterials data [4–8]. Serving the
internal needs of a large materials laboratory, the Air Force
Research Laboratory (AFRL) developed an integrated collabo-
ration environment (ICE) using a mix of readily available soft-
ware packages and tailored software solutions [4]. ICE’s ability
to directly link experimental equipment via the laboratory intra-
net makes it an attractive solution for well-secured government
laboratories. Its use of HUBzero®’s RESTful API, a web-based
application program interface, enables sharing data, research
notes, tasks, and visualizations among various research groups
in the laboratory [9]. While ICE is an excellent solution for
AFRL, it is currently available for internal use only with limited
information about its availability for global use by the ICME
community.

The above example highlights one of many successful ac-
tivities that focuses on collaboration and efficient sharing of
materials datasets (experimental and computational) among
researchers working on a variety of materials (e.g., ceramics,
polymers, metals, etc.). However, there are limited examples
of the interoperability and accessibility of algorithms used to
extract information and knowledge from shared materials da-
ta. The use of algorithms in manufacturing and materials sci-
ence (e.g., 10, 11) is not new. However, their use across the
materials and manufacturing community is highly dependent
on the computer-programming skills of practitioners.

The rise of open-source software [12] combined with web-
based hosting services (e.g., GitHub [13]) has facilitated soft-
ware sharing (e.g., MTEX [14, 15] and DREAM3D [16, 17] for
EBSD data analysis). However, the material’s practitioner is still
expected to download, install, and run the software on the ap-
propriate computational environment for which the software
was written leading to potential interoperability and compatibil-
ity issues. Moreover, big materials data are also expected to be
downloaded from the hosting server and analyzed by the
downloaded materials data analytics software which causes bot-
tlenecks with limited bandwidth. With the growth of volume,
velocity, and variety of materials datasets, a need emerged to
avoid the download, install, and run workflow for both datasets
and the associated analytics software (i.e., implemented algo-
rithm). This is accomplished via the use of cloud computing
under a software-as-a-service and/or platform-as-a-service
models (i.e., SaaS or PaaS) [18]. Believing in the importance
of the underlying structure of metallic alloys (i.e., microstruc-
ture) as the linkage between processing and properties, a
microstructure-informed cloud computing platform
(MiCloud™) [19, 20] has been developed by the authors and
deployed on both private and public servers, enabling the co-
existence of on-premises and cloud computing. It includes a
suite of microstructure informatics and materials data analytics
tools that make data and model reuse accessible to both students

and senior scientists across the globe (e.g., [21]) via a broad-
network-access using heterogeneous thin or thick client plat-
forms (e.g., tablet, laptops, etc.) [18]. Consequently, interopera-
bility, repeatability, and reproducibility of microstructure analyt-
ics have been achieved via online access for both bulk metal
forming and additive manufacturing activities [21].

Keeping the focus on the importance of the interoperability
of algorithms and the associated software, the following sec-
tion will discuss briefly the essential components of the cloud
computing platform followed by a discussion on the ICME
workflow and data storage that altogether leads to efficient use
of data analytics using various algorithms that are developed
either by the authors or by others and the associated software
implementations as shown in the case study.

Building Components of MiCloud

Building a microstructure-informed platform that enables
ICME implementation in both industrial and academic envi-
ronments necessitated the development of an ICME
workflow. This workflow directed the development of various
modules of the platform and then the composition of each
module with appropriate components as explained below:

ICME Workflow and MiCloud Modules

A new workflow needed to be developed around microstruc-
ture informatics to focus on integrating mesoscale heteroge-
neities in materials structure with process simulation for accu-
rate prediction of metallic part performance [22]. For horizon-
tal scalability, the workflow utilized (i) data science protocols
for efficient analysis of large microstructure datasets (e.g.,
cluster analysis), (ii) protocols for extracting reduced descrip-
tions of salient microstructure features for insertion into sim-
ulations (e.g., regions of homogeneity, ROH), and (iii) proto-
cols for direct and efficient linking of materials models/
databases into process/performance simulation codes (e.g.,
crystal plasticity finite element method) [22]. Following that
workflow, MiCloud was built on four main modules, each one
containing multiple datasets/models: (1) microstructure/local
state, (2) data analytics software, (3) material behavior
models, and (4) finite element analysis software (Fig. 1).
The workflow guided the development of various components
in each module by clearly identifying the inputs and expected
output of each module which resulted in identification of data
management and storage needs.

The first microstructure/local state module contains a data-
base of location-specific local states (Fig. 1) that includes both
experimental datasets (e.g., electron backscatter detection
(EBSD), backscatter electron (BSE) imaging, energy-
dispersive spectroscopy (EDS), light optical microscopy
(LOM), etc.) and simulation results (e.g., phases, stress
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tensors, strain tensors, etc). The main identifier is the location-
specific spatial coordinates (X, Y, Z) with additional identi-
fiers added to the feature vector (FV) such as time or temper-
ature. These location-specific data are used to build location-
specific feature vectors. The data are mainly unstructured data
which contain images, files, unstructured text, and videos.
While the main content being stored does not have a defined
structure, it comes packaged in objects that themselves have
structure. For example, a location ix,y,z may have multiple
BSE images at different resolutions and file formats, multiple
EBSD datasets with different step sizes, and FEM simulation
results with stress and strain tensors. Thus, a NoSQL database
was used for storage.

The second module of MiCloud is a collection of data
analytics software that implements various algorithms for pat-
tern recognition in the FV space allowing interoperability
across various datasets in the local state database. These tools
include computer vision software, dimensionality reduction
techniques (e.g., principle component analysis), supervised
and unsupervised machine learning for cluster analysis (e.g.,
k-means clustering), and higher-order statistics (e.g., two-
point statistics) and have the ability to implement additional
tools as they are developed and added.

The third module includes a collection of materials behav-
ior models such as Taylor-type crystal plasticity models [23],
fast Fourier transform-based elastoviscoplastic model [24,
25], and an oxygen ingress in titanium model [26]. The goal
of this module is to provide easy access to essential but com-
plicated material behavior models that often require signifi-
cant time and computational skills to code and compile. The
development of a web-based application with a graphical user

interface (GUI) gives access from any thin or thick client
platform to use microstructure data that is either already on
MiCloud or uploaded by the user.

The fourth module is a collection of commercial off-the-
shelf (COTS) finite element modeling software from Simufact
(an MSC Software company) [27] for metal forming, metal
welding, and additive manufacturing. To complete the vision
of ICME discipline, a digital thread integrating microstruc-
ture, data analytics, material modeling, and the FEM solvers
was established using an ICME workflow [22]. To achieve
interoperability in the linking between the various crystal plas-
ticity models and FEM, an uncoupled crystal plasticity FEM
calculation (CPFEM) was initially set up with full coupling
using HYPELA2, a user material subroutine in MSC Marc,
which is under development.

For the uncoupled linking between FEM and crystal plastic-
ity output, input files of FEM simulations account for the crystal
plasticity-predicted yield surface that captures the anisotropic
material behavior. Additionally, location-specific texture evolu-
tion is accomplished by using the evolved deformation gradient
based on the particle tracking feature in Simufact. This ap-
proach enables cloud-based interoperability of crystal plasticity
models with any FEM solver that provides an editable input file
for inserting anisotropic yield surfaces and exporting location-
specific deformation gradients. It also enables interoperability
with FEM solvers running on premises at an organization by
downloading the anisotropic yield surface fromMiCloud, mod-
ifying the FEM input file to include it, and then uploading a
location-specific deformation gradient to MiCloud for texture
evaluation without revealing any intellectual property related to
the setup of the FEM simulations.

To further expand the interoperability to practitioners using
FEM solvers that does not export deformation gradients, but
use particle-tracking or point-tracking features, the authors
developed a crystal-trackingmethod, inwhich the user assigns
eight particles (or points) at the corners of a cube for each
location of interest. Then during the simulation, the FEM
solver saves the spatial locations of each particle for each time
step and then exports it in an ASCII format. Only the evolved
spatial locations for the eight corners (i.e., crystal) are to be
exported from the FEM solver. Following the workflow in
Fig. 1 and modular programming, a web application was de-
veloped, TiCrys™, that enables the prediction of texture evo-
lution and flow behavior of metallic alloys from simulations
executed outside the cloud computing platform (Fig. 2).

Organization of Materials Datasets

Handling large materials datasets of different types is becom-
ing one of ICME’s challenges. It is typical for an ICME im-
plementation to include microstructure images, FEM simula-
tion results including numerous state variables on hundreds of

Fig. 1 A data science-centered workflow for integrating mesoscale
heterogeneities in materials structure with process simulation within
MiCloud [22] (Color figure online)
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FEM nodes after potentially thousands of time steps, process-
ing videos, and EBSD scans with hundreds of millions of data
points. Not only can the volume of data become large, but it
also comes with different noise, uncertainty, and biases in
experimental data that need to be filtered and interpreted to
preserve veracity and give confidence that the results are not
distorted. With that in mind, one of the important decisions
that had to be made was the approach for data storage, orga-
nization, and handling. One often is faced with multiple op-
tions, from flat files, structured file formats (e.g., hierarchal
data format; HDF5), relational databases (i.e., SQL data-
bases), and non-relational databases (i.e., NoSQL databases).
With interoperability of materials datasets and scalability as a
top priority, a balance was sought between the advantages and
disadvantages of each data organization method with particu-
lar emphasis on (i) data containers for efficient portability of
large microstructure datasets (e.g., HDF5), (ii) mainstream
relational databases (i.e., SQL databases), and (iii) modern
non-relational databases (i.e., NoSQL). After testing all three
methods, it was determined that all three should be used: (i)
data container models to avoid creating ad hoc methods of
dealing with multiple streams of input and output within a
computational model; (ii) relational database for synthesizing
derived data using queries, views, and stored procedures; and
(iii) NoSQL databases for creating hierarchical object docu-
ments such as data within the microstructure/local-state mod-
ule. The reasoning for this is expanded in the following
paragraphs.

To assure interoperability and reduce the probability of data
loss in hierarchical data files, it was decided to store raw data
as flat files (data files that contain records with no structured
relationships). Both HDF5 files and databases are used for
data products from data analysis and simulations. HDF5 is a
multipurpose, open-source hierarchical container format capa-
ble of storing large numerical datasets with their metadata.
Effectively, HDF5 can be seen as a file system within a file,
where files are datasets and folders are groups [28]. HDF5
files are portable and extensible which makes them efficient
for data sharing among various ICME projects [29]. There are
pros and cons to moving forward with this file format. The
advantages include open source within a large supportive
community [30], portability with metadata included, chunked
datasets that can be resized along a given dimension, and
possible support for compression.

Some of the reported disadvantages of HDF5 include the
following [28]: the file format must be designed, there is a
high risk of data corruption, there are bugs and crashes in
the HDF5 library and in the wrappers, it could be impossible
to explore datasets with standard Unix/Windows tools, there is
a hard dependency on a single implementation of the library,
and there is a high complexity of the specification and the
implementation. During the implementation of HDF5 in
MiCloud, the design of HDF5 file format for various material
files was time consuming. Furthermore, the implementation of
HDF5 to contain thousands of EBSD files failed with the
corruption of data in one of those files which often occurs

Fig. 2 Workflow for interoperability of MiCloud crystal plasticity with on-premise FEM simulations using the crystal tracking approach for predicting
location-specific texture evolution and anisotropic mechanical behavior (Color figure online)
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when collecting EBSD data over multiple days. Consequently,
it was decided to use HDF5 only when dealing with multiple
streams of input and output within a computational model and
when datasets are shared via conventional download process.

For all other activities, flat files were used and managed by
a database. This database required the use of a database man-
agement system (DBMS) that interacts with the user, other
applications, and the database itself to capture and analyze
data and allow the definition, creation, querying, update, and
administration of databases. Two types of databases were
used: SQL and NoSQL databases. Mainly, the NoSQL data-
base was used for managing the unstructured local state
datasets, and the SQL database was used elsewhere. Table 1
has an outline of the benefits of each type that directed the
implementation in MiCloud. In summary, it was concluded
that for interoperability, scalability, and efficient usage of
MiCloud, there is no “one size fits all” for data storage.
Thus, HDF5 files and databases (SQL and NoSQL) were
utilized.

The preceding sections focused on describing the building
blocks of MiCloud following the ICME workflow. The fol-
lowing case studies demonstrate the utility of MiCloud for
interoperability of various datasets and applications,
highlighting the platform’s ability to handle multiple types
of data, carry out successful data characterization, and inte-
grate between multiple software programs.

Case Description and Discussion

To demonstrate the interoperability benefits of microstructure-
informed web-based applications, the following discussion
focuses on analytics from microstructure data for Ti6Al4V
and modeling data from Ni-based superalloys. Automatic
identification and quantification of different phases in BSE
images is followed by characterization of microtextured re-
gions (MTRs) in EBSD data that are characterized by the
spatial clustering of primary alpha particles with similar ori-
entations. The selection of the case study was motivated by
various efforts on the detrimental impact of MTR on the

fatigue life of alpha/beta titanium alloys [32–37].
Researchers seeking quality control via pattern discovery in
multiple Ti6Al4V samples [38] can easily generate terabytes
of raw data. Storage and exchange of such datasets becomes a
challenge for materials scientists and engineers which is
compounded as more projects need to be handled across a
supply chain or a large organization. Thus, the current case
study offers an efficient solution for the interoperability of
various algorithms analyzingMTRs with an emphasis on scal-
ability via cloud computing.

MTRs are often reported [32–37] in the bimodal micro-
structure (Fig. 3) of the alpha/beta titanium alloy (e.g.,
Ti6Al4V, Ti6242) that is desirable for applications limited
by strength, ductility, and/or high cycle fatigue properties. In
such a microstructure, the beta phase is shown in BSE images
as white/light gray layers or regions surrounding the alpha
phase that is revealed as dark gray/black regions due to the
segregation of vanadium and aluminum into the two phases,
respectively. The alpha phase has two morphologies in the
bimodal microstructure: a colony-type morphology with alter-
nating alpha laths laminated in a layer of thin beta in what is
called secondary alpha, and islands of dark gray/black globu-
lar primary alpha particles [39].

There is a significant range of length scales covered by
these features. It has been reported that beta layer thickness
can be fractions of a micrometer, secondary alpha laths are
measured in a few microns, primary alpha particles cover tens
of microns [40], and microtextured regions (MTRs) can cover
tens of millimeters [38]. Consequently, various characteriza-
tion techniques are used to capture the multiscale characteris-
tics of MTRs including (but not limited to) backscattered elec-
tron (BSE) imaging to capture the morphology of beta, prima-
ry and secondary alphas, and electron backscatter diffraction
(EBSD) to capture the crystallography of various phases.
Robust MTR identification and quantification may require
large-area EBSD scans at a resolution (scan step size) that
results in hundreds of millions of pixels. The nature of
EBSD data collection by a combined beam/stage control
method generates thousands of EBSD tiles (i.e., windows) to
characterize an area of 10 mm × 10 mm at 1 μm step size

Table 1 Brief comparison of databases used in MiCloud [31]

SQL NoSQL

Data
storage

Stored in a relational model, with rows and columns. Rows contain all of the
information about one specific entry/entity, and columns are all the separate
data points.

The term “NoSQL” encompasses a host of databases,
each with different data storage models: document,
graph, key value, and columnar.

Schemas
and
flexibility

Each record conforms to fixed schema, meaning that the columns must be
decided and locked before data entry and each rowmust contain data for each
column. Amending involves altering the whole database and going offline.

Schemas are dynamic. Information can be added on the
fly, and each “row” (or equivalent) does not have to
contain data for each “column.”

Scalability Scaling is vertical. More data means a bigger server, which can get very
expensive. It is possible to scale an RDBMS across multiple servers, but this
is a difficult and time-consuming process.

Scaling is horizontal, meaning across servers. Many
NoSQL technologies also distribute data across
servers automatically.

Integr Mater Manuf Innov (2017) 6:111–126 115
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which results in hundreds of GB of data per sample just for
MTR characterization. Since accurate characterization of
MTR features requires analysis of both BSE and EBSD
datasets, the following sections discussed analytics of BSE
first then EBSD datasets.

Feature Detection and Quantification Various Phases
in BSE Images

The fact that primary alpha and secondary alpha features have
the same Z-Contrast and crystal structure means that they have
the same contrast in BSE images [41] and hence require ad-
vanced algorithms to identify the features based on chemistry
and/or morphology. Since the morphology of both features are
dependent on an often unknown processing pedigree, the al-
gorithm used needs to be based on pattern recognition rather
than pattern matching (or templates). These techniques are
included in a web app (TiSeg™) on MiCloud with repeatable
and reproducible results on thousands of BSE images. It

employs various algorithms for computing abstractions of im-
age information based on computer vision and image process-
ing techniques, enabling local decisions at every pixel to de-
termine whether there is primary alpha, secondary alpha, or
beta at that pixel. This results in three subsets of the image
domain: segmented primary alpha, segmented secondary al-
pha, and segmented beta (left of Fig. 3).

Segmentation of various phases is only the first step. The
crucial second step is the quantification of each phase (i.e., the
feature of interest, FOI). To account for the spatial distribution
of the FOI, two-point statistics and chord length distribution
(CLD) [22] were used (Fig. 3). These techniques enable the
user to quantify the heterogeneous spatial variability of the
FOI as well as the anisotropic morphology in a manner that
is not possible by legacy methods that use single-point metrics
(e.g., ASTM E112).

In brief, the two-point statistics captures the probability of
finding a vector with the head and the tail from the same FOI
for all possible lengths and directions of the vector [42]. The

h�p://www.icmrl.com/
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Fig. 3 Screenshot of identification and quantification of primary alpha, secondary alpha, and beta phases in alpha/beta titanium backscattered electron
images and optical images using TiSeg™ app running on MiCloud platform (Color figure online)
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CLD captures the probability of finding a line segment that
falls inside the FOI for all possible lengths and directions of
the line segment. Together, they encompass the fingerprint of
the whole subdomain image for a specific FOI [22]. As such,
further data analytics of the two-point statistics and CLD en-
ables fast, repeatable, and reproducible microstructure-based
quality control as will be shown later for MTRs.

Linking to computational models that are based on single-
point metrics and the associated distribution is simply done by
extracting particular single-point metrics from the higher-
order statistics. In particular, the volume fraction of any phase
is calculated as two-point statistics for a vector of zero length
which is the highest probability for any FOI (e.g., 0.41 for
primary alpha, Fig. 3). The average, median, and distribution
of an FOI size in any particular direction is calculated from
extracting radial data from the CLD plot in Fig. 3. This is done
automatically for preselected directions at 10° increments as
shown in the bottom right of Fig. 3 or at any direction that is
selected by the user via the CLD app. Single-point metrics of
FOI size for the whole image are also tabulated in the bottom
loft corner of Fig. 3. However, any information about mor-
phological anisotropy is lost in this single point metrics data.

Despite the complicated mathematics and computer pro-
gramming behind the computer vision algorithms and the
higher-order statistics, cloud computing made it accessible
for materials science practitioners regardless of the computer
programming skills [19, 20]. Furthermore, the calculated two-
point statistic and CLD are available for various power users
to be utilized in various data analytics needs. For example,
two Ti6Al4V images showed distinctive microstructure het-
erogeneity that was not captured by single-point metrics while
being revealed by two-point statistic and CLD plots in Fig. 4.
Batch processing of tens of thousands of images is also auto-
mated for microstructure-based quality control which can be
essential for optimizing thermomechanical processing of a
material or reducing batch to batch, lot to lot, or supplier to
supplier variability in an organization or across a supply chain.
It is worth noting that these computational intensive apps han-
dling tens of thousands of images can be accessed via thick or
thin web client interface.

In another example, further interoperability of the devel-
oped apps is demonstrated by quantification of solidified mi-
crostructure predicted by MICRESS®, a MICRostructure
Evolution Simulation Software [43, 44] that enables the
time- and space-resolved calculation of microstructure forma-
tion. The workflow (Figs. 5 and 6) to insert MICRESS results
into MiCloud was developed, and data were uploaded in 24 h
during the 2016 ICMEg conference. The results of data ana-
lytics were obtained and presented in the conference.
Specifically, the phase field simulation results by MICRESS
(Figs. 6 and 7) for IN738 and IN 738+ 2% Nb were analyzed
by TiSeg™ to extract two-point statistics, CLD, and single-
point metrics of the dendrites. The higher-order statistics

revealed a distinct difference due to the addition of Nb as
shown in the CLD and two-point statistics (Figs. 8 and 9). It
was found that the average size of the dendrites, based on the
CLD from TiSeg, was much smaller than the reported size
(Fig. 7) values based on the equivalent circle diameter due
to the inclusion of the anisotropic morphology of dendrites
in the CLD results. Higher magnification of the two-point
statistics showed a difference in the alignment in the dendrite
arms between both materials as highlighted by the white lines
in Figs. 8 and 9. The randomness of the alignment of the
dendrite arms can be confirmed by comparing the two-point
statistics from multiple simulations of the same material. The
difference in the volume fractions, mean, minimum, and max-
imum CLD metrics was revealed in the tables associated with
the results for each material. Hundreds of simulations can be
compared easily using this technique to evaluate the effect of
alloying elements, modeling parameters, or other objectives
that can be set by the user. These can be done in an uncoupled

Phase Volume 
Frac�on

Alpha 0.85587

Beta 0.14413

Original image Segmented image

Two Point Correla�on

0°

270°

180°

90°

40

20

5

315°

225° 135°

45°

Chord Length Distribu�on

30

Phase Volume 
Frac�on

Alpha 0.857985

Beta 0.142015

Original image Segmented image

Two Point Correla�on

0°

270° 90°

50

20

10

315°

225° 135°

45°

30

40

Chord Length Distribu�on180°

Fig. 4 Quantification of BSE images of the Ti6Al4V sample by two-
point correlations and chord length distributions revealed the drastic
differences in morphology despite the similarity in the single-point
metrics at different spatial locations of the same sample (Color figure
online)
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manner where MICRESS runs on premises and then only the
results are uploaded to MiCloud for data analytics (Fig. 5).
While the above results are not related to Ti6Al4Vmicrostruc-
tures, it is included to demonstrate the interoperability across
various materials enabling the reuse of the higher-order statis-
tics algorithms.

Feature Recognition of Microtextured Regions in EBSD
Datasets

A microtextured region (MTR) is characterized by spatial clus-
tering of a feature of interest (FOI) (e.g., primary alpha) with
similar crystallographic orientation. Since the location or size is

unknown prior to conducting EBSD scans, large-area EBSD
scans [38] are often conducted covering areas as big as
100 mm2. This is accomplished via a special control of the scan-
ning electronmicroscope that combines beam and stage controls.
Such a scan results in thousands of EBSD tiles. Post-processing
of these tiles requires the use of software that can handle millions
of orientations. Those thousands of EBSD files (in ASCII for-
mat) can be batch uploaded to MiCloud with an associated log
file that identifies the spatial location of each tile. To assure
interoperability of the analytics software with various data gen-
eration platforms, both *.ang (from EDAX [45]) and *.ctf files
(from Bruker [46] and HKL [47]) can be analyzed. Since the flat
files are used without combining them into a HDF5 file, three

Fig. 6 Screenshot showing the addition of MICRESS [44] results into MiCloud database for analysis (Color figure online)

Fig. 5 MiCloud workflow for
quantification of MICRESS [44]
results on cloud computing as an
example of global interoperability
of the platform (Color figure
online)
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different apps on MiCloud can be used for analysis, in particular
TiZone™, Dream3D, and Woodfield. It is worth noting that
Dream3D software is developed and distributed by Bluequartz
[17] for on-premise use. However, the web-based implementa-
tion in MiCloud and the associated GUI was developed by the
authors. The algorithm behind the color coding of orientation
information in the Woodfield app was developed by Yamrom
[48] and implemented for MTRs by Woodfield [35]. However,
the software for implementation on MiCloud was developed by
the authors. This demonstrates the ability of inserting algorithms
and/or software developed by others in MiCloud platform. A

brief description of each algorithm and the associated software
is discussed below:

The TiZone algorithm and the associated software was de-
veloped by the authors [49] based on two sequential steps: (1)
unsupervised machine learning (e.g., k-means clustering) and
pattern recognition in the generalized spherical harmonics
(GSH) [50] domain to identify MTR families according to
orientation clustering and (2) mapping MTR families to the
spatial domain to quantify MTRs based on their spatial clus-
tering [49]. This approach eliminates the need to stitch thou-
sands of EBSD tiles in one large file which offers significant
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0.
5

0.
7

0
0.
04

0

270°

180°

Length Fraction

Number Fraction

Linear

0.0 20 40 60 100

0.02

0.06

0.04

Fig. 8 MiCloud analytics of
MICRESS predictions for IN738
in Fig. 7 (Color figure online)
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benefits for handling datasets with corrupt tiles and/or enables
MTR recognition without an upper limit on the total number
of orientations since tiles are processed individually. Also,
TiZone is an example of an algorithm that is built for horizon-
tal scaling by allowing the processing of input datasets in a
completely parallel manner with the use of as many computa-
tional nodes as needed and then sorting the output and assem-
bling it for representation of the whole dataset.

The Dream3D algorithm and the associated software use an
efficient *.hdf5 files to stitch all tiles, and then MTRs are
identified based on misorientation of neighboring pixels ac-
cording to misorientation thresholds identified by the user.
The advantage of this approach is that it uses a methodology
familiar to the user, as it is similar to the algorithm used in
identifying grains in popular commercial EBSD analysis
software.

The algorithm of the third approach is based on a coloring
technique that was developed by the General Electric (GE)
team in 1997 [48], for visualization of a two-dimensional ori-
entation data on a surface by constructing an icosahedron at a
point on the surface corresponding to the orientation vector.
Orientation vectors are projected onto facets of the icosahe-
dron, and the surface point which is associated with the orien-
tation vector is color-coded with the color of the intersected
facet. Colors are assigned to facets of the icosahedron such

that adjacent facets have similar colors. A software for
implementing the algorithm was developed in-house and
named Woodfield, acknowledging his implementation of the
methodology for visual identification of MTRs [35].

The interoperability of the developed apps is shown in the
workflow in Fig. 10 including an efficient integration with
crystal plasticity and finite element analysis via the generation
of representative orientation distribution (ROD) (via Ti-
ROD™ app) which saves the crystal plasticity calculation
time by more than 99.5% [22].

In particular, upon uploading the individual tiles to TiZone
app on the cloud, the three inverse pole figure (IPF) maps for
the raw data are plotted (Fig. 11) and the data is colored ac-
cording to Yamrom method [48] to reveal MTRs visually
(Fig. 12).

To demonstrate the pattern discovery in a generalized
spherical harmonics (GSH) space for automatic identification
of MTR using the C-coefficients, a colored C-Map [49] from
TiZone is first used to visualize various MTR families. The C-
Map is a spatial representation of the projection of the c-axes
of individual crystals to the sample coordinate systems. To
confirm interoperability of various developed algorithms pro-
cessing the same dataset, a simple comparison of the C-Map
and Woodfield map for the [0001] axis of the alpha phase in
the EBSD is conducted. The maps showed good agreement
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Fig. 10 Workflow for identification and quantification of microtextured regions (MTR) or Macrozones including integration with crystal plasticity and
FEM simulations (Color figure online)

Fig. 11 Inverse pole figure maps for large-area EBSD scans as plotted by TiZone on MiCloud (Color figure online)
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between both methods of coloring the EBSD orientations,
revealing the MTRs similarly, but the difference that the C-
Map uses continuous coloring scheme while the icosahedron
method uses coloring based on preassigned bins (Fig. 13).
Both coloring methods showed MTRs regardless of the pres-
ence of points with lower confidence index (black pixels in
Fig. 13).

A crucial step for MTR identification by TiZone is the
segmentation which results in three main families that are
color-coded according to the centroid orientation of each

family with the red MTRs having the highest area fraction
(close to the ND) and the blue MTR having the lowest area
fraction (close to the RD) (Fig. 14). This is achieved by
conducting cluster analysis in the GSH domain first followed
by mapping clustered data to the real space with each pixel
associated with the identified MTR family. This approach en-
ables the use of unsupervised machine learning [49] to iden-
tify orientation clusters without prior knowledge of tolerance
on the misorientation between neighboring pixels in real
space. One of the major benefits of this approach is the ability

Fig. 12 EBSD data colored according to Yamrom’s method [48] to reveal MTR using Woodfield app on MiCloud (Color figure online)

Fig. 13 Coloring EBSD dataset
by C-Map [49] and icosahedron
methods [48] in TiZone (left) and
Woodfield apps (right) on
MiCloud. Black points are data
with low confidence index (CI)
from sample preparation (Color
figure online)
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to identify MTRs in 3D EBSD datasets (e.g., serial sectioning
or oblique sections) without the constraints of the proximity of
the dataset as long as each pixel is associated with an x, y, z
spatial location in the sample coordinate system. The ability to
analyze non-rectangular scans is another benefit.

The quantification of the segmented MTR is then achieved
by the use of higher-order statistics (i.e., two-point correlation)
by integration with the two-point correlation app and the
chord length distribution app (Fig. 15). These two apps are
the same ones used to quantify TiSeg segmented features.
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This confirms the interoperability of both apps since they are
built to quantify the spatial distribution of an FOI regardless of
what is that feature (e.g., primary alpha phase, dendrites, or
MTR family). Since the FOI is identified with algorithms
acting on input data in parallel, the quantification is also done
in parallel, enabling horizontal scaling with the size of the
input dataset. An example of conducting MTR identification
and quantification on many samples was demonstrated by
Pilchak et al. [38] using microstructure-based quality control
to identify the effect of billet size on MTR for Ti6242Si.

The interoperability of microstructure datasets stored in flat
files is further proven by the authors’ web-based implementa-
tion of the open-source application Dream3D [16] that was
developed around the Macrozone pipeline [17] to identify
MTR. It was then integrated with MiCloud for quantification
of the segmented MTR by two-point statistics and CLD apps
that were previously used with TiZone and TiSeg. Using the
same EBSD dataset demonstrated above by the TiZone and
Woodfield apps, a grain map was generated in which MTR
was identified by randomly selected colors with area fraction
of each grain plotted in a boxplot (Fig. 16) to be used for
further segmentation of MTRs based on area fraction thresh-
old selected by the user which enabled quantification of seg-
mented MTRs by the two-point correlations and CLD apps
(Fig. 17).

Using the same EBSD dataset across various apps showed
some of the many benefits of adopting a cloud computing
platform in ICME implementations, allowing for data and
model reuse by users across the globe.

Conclusions

Interoperability of materials datasets, data analytics tools, and
computational software are crucial elements for practical im-
plementation of ICME and MGI visions. Microstructure-
informed cloud computing (MiCloud) was developed to offer
a practical platform for interoperability of materials datasets
and data analytics tools. Global sharing of microstructure data
analytics and collaboration among academic researchers and
across industrial supply chains was demonstrated on a case
study using BSE and EBSD datasets for Ti6Al4V that were
analyzed for identification and quantification of various fea-
tures of interest (FOIs) including primary alpha particles, beta
phase, secondary alpha laths, and microtextured regions
(MTRs). The case study showed that for interoperability, scal-
ability, and efficient reuse of big material datasets and data
analytics, there was no “one size fits all” for data storage.
Thus, flat files, HDF5 files, and databases (SQL and
NoSQL) were all utilized in MiCloud.
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